2007
DOI: 10.2140/pjm.2007.232.207
|View full text |Cite
|
Sign up to set email alerts
|

Sur le déploiement des formes bilinéaires en caractéristique 2

Abstract: This article deals with the standard splitting of bilinear forms in characteristic 2. The first part is devoted to the study of bilinear Pfister neighbors (the definition of such a bilinear form is slightly different from the classical definition of a Pfister neighbor quadratic form). In the second part, we introduce the degree invariant for bilinear forms and we prove that for any integer d ≥ 0, the d-th power of the ideal of even dimensional bilinear forms coincides with the set of bilinear forms of degree ≥… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
21
0
6

Year Published

2009
2009
2024
2024

Publication Types

Select...
6

Relationship

3
3

Authors

Journals

citations
Cited by 10 publications
(27 citation statements)
references
References 19 publications
0
21
0
6
Order By: Relevance
“…The quotients I n (F ) := I n (F )/I n+1 (F ) give rise to the graded Witt ring. The Arason-Pfister Hauptsatz states that if 0 = B ∈ I n (F ) is anisotropic then dim B 2 n , and if dim B = 2 n then B ∼ = λπ for some λ ∈ F * and some π ∈ BP n (F ), see, e.g., [L3,Lemma 4.8]. (This Hauptsatz for bilinear forms in characteristic 2 is already contained in the original article by Arason-Pfister [AP], but the proof there contains an error.…”
Section: Bilinear Forms and The Witt Ring In Characteristicmentioning
confidence: 99%
“…The quotients I n (F ) := I n (F )/I n+1 (F ) give rise to the graded Witt ring. The Arason-Pfister Hauptsatz states that if 0 = B ∈ I n (F ) is anisotropic then dim B 2 n , and if dim B = 2 n then B ∼ = λπ for some λ ∈ F * and some π ∈ BP n (F ), see, e.g., [L3,Lemma 4.8]. (This Hauptsatz for bilinear forms in characteristic 2 is already contained in the original article by Arason-Pfister [AP], but the proof there contains an error.…”
Section: Bilinear Forms and The Witt Ring In Characteristicmentioning
confidence: 99%
“…La hauteur de B, qu'on note h(B), est le plus petit entier h tel que dim B h ≤ 1. La classification des formes bilinéaires de hauteur 1 a été donnée dans [19,Th. 4.1] et affirme ce qui suit: Une forme bilinéaire anisotrope B est de hauteur 1 si et seulement si il existe une forme bilinéaire de Pfister π = 1 b ⊥ π telle que B soit semblable à π ou π suivant que dim B est paire ou impaire (⊥ désigne la somme orthogonale).…”
unclassified
“…Sinon, on dit que B est de degré 0. La forme B est dite bonne lorsque la forme π est définissable sur F. Dans ce cas, on sait que π est définie sur F par une forme bilinéaire de Pfister [19,Prop. 5.3].…”
unclassified
See 2 more Smart Citations