An experimental investigation was performed on the coefficients of friction (COFs) and wear properties of pure water and oil-in-water (O/W) working fluids containing carbon nanocapsules (CNCs) with concentrations ranging from 0 to 1.0 wt.%. For the O/W working fluid, the ratio of oil to water was set as 6%. It was shown that for the water working fluid, the COF decreased by around 20% as the CNC content increased from 0 to 1.0 wt.%. In contrast, the wear volume increased by 50% as the CNC addition increased from 0 to 0.5 wt.%, but it fell to a value slightly lower than that achieved using only pure water (i.e., no CNCs) as the CNC content was further increased to 1.0 wt.%. For the O/W emulsion, the addition of 0.8 wt.% CNCs reduced the COF by around 30% compared to that of the emulsion with no CNCs. Overall, the results showed that while the addition of a small quantity (6%) of oil to the water working fluid had a relatively small effect on the wear performance, the addition of an appropriate quantity of CNCs (i.e., 0.8 wt.%) resulted in a significantly lower COF and an improved wear surface.