Calcium phosphate was formed on nickel-free high-nitrogen stainless steel (HNS) by chemical solution deposition. The calcium phosphate deposition was enhanced by glutamic acid covalently immobilized on the surface of HNS with trisuccinimidyl citrate as a linker. X-ray diffraction patterns and Fourier transform infrared spectra showed that the material deposited on glutamic acid-immobilized HNS within 24 h was low-crystallinity calcium-deficient carbonate-containing hydroxyapatite (HAp). The biological activity of the resulting HAp-coated HNS was investigated by using a human osteoblast-like MG-63 cell culture. The HAp-coated HNS stimulated the alkaline-phosphate activity of the MG-63 culture after 7 days. Therefore, HAp-coated HNS is suitable for orthopedic devices and soft tissue adhesion materials.