Abstract. Nanocomposites were fabricated based on diglycidyl ether of bisphenol A (DGEBA), cured with triethylenetetramine (TETA) and filled with: a) high conductivity carbon black (CB) and b) amino-functionalized multiwalled carbon nanotubes (MWCNTs). The full dynamic mechanical analysis (DMA) spectra, obtained for the thermomechanical characterization of the partially cured DGEBA/TETA/CB and water saturated DGEBA/TETA/MWCNT composites, reveal a complex behaviour as the !-relaxation appears to consist of more than one individual peaks. By employing some basic calculations along with an optimization procedure, which utilizes the pseudo-Voigt profile function, the experimental data have been successfully analyzed. In fact, additional values of sub-glass transition temperature (T i ) corresponding to subrelaxation mechanisms were introduced besides the dominant process. Thus, the physical sense of multiple networks in the composites is investigated and the glass transition temperature T g is more precisely determined, as the DMA !-relaxation peaks can be reconstructed by the accumulation of individual peaks. Additionally, a novel term, the index of the network homogeneity (IH), is proposed to effectively characterize the degree of statistical perfection of the network.