2023
DOI: 10.3390/math11020380
|View full text |Cite
|
Sign up to set email alerts
|

Surface Approximation by Means of Gaussian Process Latent Variable Models and Line Element Geometry

Abstract: The close relation between spatial kinematics and line geometry has been proven to be fruitful in surface detection and reconstruction. However, methods based on this approach are limited to simple geometric shapes that can be formulated as a linear subspace of line or line element space. The core of this approach is a principal component formulation to find a best-fit approximant to a possibly noisy or impartial surface given as an unordered set of points or point cloud. We expand on this by introducing the G… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 29 publications
0
2
0
Order By: Relevance
“…Article [9] presents new theoretical and applied results in stochastic processes in spatial kinematics and line geometry for modeling some characteristics of 3D surfaces. The authors introduced theoretical principles on line-element geometry, kinematic surfaces, and the Gaussian process latent variable model (GPLVM).…”
mentioning
confidence: 99%
“…Article [9] presents new theoretical and applied results in stochastic processes in spatial kinematics and line geometry for modeling some characteristics of 3D surfaces. The authors introduced theoretical principles on line-element geometry, kinematic surfaces, and the Gaussian process latent variable model (GPLVM).…”
mentioning
confidence: 99%
“…Experiments are conducted on synthetic and real world objects. We published the findings of this chapter in [32].…”
Section: Surface Approximation By Means Of Gplvmmentioning
confidence: 99%