In coal-fired power plants, coal piles serve as the fundamental management units. Acquiring point clouds of coal piles facilitates the convenient measurement of daily coal consumption and combustion efficiency. When using servo motors to drive Light Detection and Ranging (LiDAR) scanning of large-scale coal piles, the motors are subject to rotational errors due to gravitational effects. As a result, the acquired point clouds often contain significant noise. To address this issue, we proposes a Rapid Point Cloud Stitching–Constrained Particle Filter (RPCS-CPF) method. By introducing random noise to simulate servo motor rotational errors, both local and global point clouds are sequentially subjected to RPCS-CPF operations, resulting in smooth and continuous coal pile point clouds. Moreover, this paper presents a coal pile boundary detection method based on gradient region growing clustering. Experimental results demonstrate that our proposed RPCS-CPF method can generate smooth and continuous coal pile point clouds, even in the presence of servo motor rotational errors.