been widely used as promising agents for multifunctional blood vessel imaging and tumor imaging. All these agents with well-defined surface chemistry performed good stability and high fluorescence in physiological environment and can be used for NIR-II imaging in vivo. However, due to the large hydrodynamic size, most of inorganic nanoparticles still cannot be excreted rapidly by kidney. The accumulation of these materials in body may induce potential liver toxicity, which prevents their further applications in clinical medicine. Moreover, the organic materials, such as conjugated polymer fluorophores [7] and small molecules, [8] have improved biocompatibility, showing great potential in clinical translation. Nevertheless, the fluorescence quantum yield (QY) of these materials is still far from ideal. Thus, it is desirable to design an NIR-II agent with high QY as well as high efficiency in renal clearance for wide biological and clinical applications. Here, we present a bright Au 25 cluster with the unique cage-like structure that can emit NIR-II fluorescence at 1100-1350 nm by the charge transfer between ligand and gold core. [9] Metal doping further increases fluorescence QY of Au 25 clusters. The time-resolved brain blood flow shows significant differences between healthy and injured brain, which allow us to distinguish the lipopolysaccharides (LPS) induced brain injury and stroke in vivo. Meanwhile, real-time cancer metastasis is monitored by NIR-II imaging. Importantly, the ultrasmall hydrodynamic size of 3.2 nm allows the gold clusters to cross the glomerular filtration and be excreted fast by Near-infrared II (NIR-II) imaging at 1100-1700 nm shows great promise for medical diagnosis related to blood vessels because it possesses deep penetration and high resolution in biological tissue. Unfortunately, currently available NIR-II fluorophores exhibit slow excretion and low brightness, which prevents their potential medical applications. An atomic-precision gold (Au) cluster with 25 gold atoms and 18 peptide ligands is presented. The Au 25 clusters show emission at 1100-1350 nm and the fluorescence quantum yield is significantly increased by metal-atom doping. Bright gold clusters can penetrate deep tissue and can be applied in in vivo brain vessel imaging and tumor metastasis. Time-resolved brain blood-flow imaging shows significant differences between healthy and injured mice with different brain diseases in vivo. High-resolution imaging of cancer metastasis allows for the identification of the primary tumor, blood vessel, and lymphatic metastasis. In addition, gold clusters with NIR-II fluorescence are used to monitor highresolution imaging of kidney at a depth of 0.61 cm, and the quantitative measurement shows 86% of the gold clusters are cleared from body without any acute or long-term toxicity at a dose of 100 mg kg −1 .