Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Nuclear power components contain radioactivity on their surfaces after long-term service, which can be harmful to personnel and the environment during maintenance, dismantling, and decommissioning. In this experiment, laser decontamination technology is utilized to remove radioactivity from their surfaces. In order to meet the actual needs, a laser decontamination process without spot overlapping has been studied. Under the same equipment conditions, the decontamination efficiency of the non-spot overlapping process is 10 times higher than that of the spot overlapping process. Alloy 690 is used as the test substrate, and non-radioactive specimens are prepared by simulating primary-circuit hydrochemical conditions. The surface morphology, elemental composition, and phase composition of the specimens before and after laser decontamination are investigated with SEM and XRD using the single-pulse experiment and power single-factor experiment methods, and the laser decontamination effect was evaluated. The results show that the decontamination efficiency reached 10.8 m2/h under the conditions of a pulse width of 500 ns, a laser repetition frequency of 40 kHz, a scanning speed of 15,000 mm/s, and a line spacing of 0.2 mm, according to which the removal effect was achieved when the laser power was 160 W and the oxygen content on the surface was 6.29%; additionally, there were no oxide phases in the XRD spectra after decontamination. Therefore, the laser cleaning process without spot overlap can provide reference for future practical operations to achieve efficient removal of radioactivity from nuclear power components.
Nuclear power components contain radioactivity on their surfaces after long-term service, which can be harmful to personnel and the environment during maintenance, dismantling, and decommissioning. In this experiment, laser decontamination technology is utilized to remove radioactivity from their surfaces. In order to meet the actual needs, a laser decontamination process without spot overlapping has been studied. Under the same equipment conditions, the decontamination efficiency of the non-spot overlapping process is 10 times higher than that of the spot overlapping process. Alloy 690 is used as the test substrate, and non-radioactive specimens are prepared by simulating primary-circuit hydrochemical conditions. The surface morphology, elemental composition, and phase composition of the specimens before and after laser decontamination are investigated with SEM and XRD using the single-pulse experiment and power single-factor experiment methods, and the laser decontamination effect was evaluated. The results show that the decontamination efficiency reached 10.8 m2/h under the conditions of a pulse width of 500 ns, a laser repetition frequency of 40 kHz, a scanning speed of 15,000 mm/s, and a line spacing of 0.2 mm, according to which the removal effect was achieved when the laser power was 160 W and the oxygen content on the surface was 6.29%; additionally, there were no oxide phases in the XRD spectra after decontamination. Therefore, the laser cleaning process without spot overlap can provide reference for future practical operations to achieve efficient removal of radioactivity from nuclear power components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.