In recent years, the rapid expansion and development of the shale gas industry in the Sichuan Basin has coincided with a series of unexpected moderate-sized earthquakes. Given that the Sichuan Basin is situated within a stable interior block, the focal mechanism of the 2019 earthquake sequence (ML4.7, ML5.4, and ML5.2) in the Weiyuan-Rongxian area remains a subject of debate. In this study, we propose a joint InSAR- and PCA- based inversion method utilizing the distributed Mogi model to investigate the spatial-temporal characteristics of a gas reservoir and evaluate the induced Coulomb stress change. The surface deformation derived from Sentinel-1 data between 2015 and 2021 was consistent with the spatial distribution of production wells, and it correlated with the temporal changes in reservoir volume associated with the shale gas operating process. The Coulomb stress loading on the regional faults suggests that human activities associated with shale gas operation likely triggered the three moderate earthquakes. Furthermore, our results indicate Coulomb stress loadings of 10 kPa, 15 kPa, 5 kPa, 3 kPa, and 87 kPa on the Dongxingchang fault, Gaoqiao fault, Dayaokou fault, Niujingao fault, and Lijiachang fold, respectively. Consequently, fluid injection and extraction during shale gas development could be contributing to the elevated seismic activity in the Weiyuan-Rongxian area.