Surface effects are important for modeling structures, such as nanofilms, nanoporous materials, and other nanoscale constructions. In the current study, we consider the problem of the theory of elasticity - the problem of a half-plane containing a circular hole, stretched by constant stresses applied at infinity, and take into account surface effects such as surface elasticity and surface stresses. The problem solution has been obtained by expanding the Fourier series with the variables written in the bipolar coordinate system (which simplifies the problem solution because one of the coordinates becomes a constant on the hole contour), where the stress components are expressed through a bi-harmonic stress function. The parametric coefficients involved in the solution, namely in the Fourier series, are determined in order to satisfy the boundary conditions on the hole contour. To solve the problem, in addition to the equations of the theory of elasticity, the equations of surface elasticity were used, in particular, by applying the generalized Young-Laplace’s law and the Shuttleworth’s law; the surface stress on the hole contour has been calculated directly. Using recurrence relations for the stress components at the boundary, stress concentration values have been obtained. The resulting expressions can be considered as a generalized solution of the problem in case of the classical elasticity. The stress concentrations are compared for the cases with and without taking into account surface effects at various points on the hole contour. The contribution caused by the surface effects depending on the relative distance between the hole and the half-plane boundary is studied. It is shown that despite a quite simple geometry, owing to the fairly small distance between the hole and the half-plane boundary, the stress concentration with and without taking into account the surface stress are significantly different from each other, due to the significant contribution of surface effects.