Haze is the phenomenon of visibility degradation caused by extinction effects related to the physicochemical properties of atmospheric particulate matter (APM). Atmosphere heterogeneous reactions can alter the physicochemical properties of APM. Therefore, it is important to understand the atmospheric heterogeneous reactions of APM in order to reveal the cause of haze. Herein, the current situation, developmental trend, source, and composition of APM pollution in China are reviewed. Additionally, we introduce the reaction characteristics and key chemical processes of common inorganic, organic, and mixed pollutant gases on the surface of mineral particles. The effects of mineral particulate matter on aggregation, regulation, and catalysis in the formation of atmospheric aerosols and the synergistic reaction mechanism of SO2, NO2, O3, and VOCs on the surfaces of different mineral particles are summarized. The problems existing in the current research on heterogeneous reactions on the surfaces of mineral particles are also evaluated. This paper aims to gain a deep understanding of the mechanism of mineral particulate matter promoting the formation of secondary aerosols and attempts to provide theoretical support for effective haze control.