In this study, surface-enhanced Raman spectroscopy (SERS) technique, along with principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA), is used as a simple, quick, and cost-effective analysis method for identifying biochemical changes occurring due to induced mutations in the Aspergillus niger fungus strain. The goal of this study is to identify the biochemical changes in the mutated fungal cells (cell mass) as compared to the control/nonmutated cells. Furthermore, multivariate data analysis tools, including PCA and PLS-DA, are used to further confirm the differentiating SERS spectral features among fungal samples. The mutations are caused in A. niger by the clustered regularly interspaced palindromic repeat CRISPR-Cas9 genomic editing method to improve their biotechnological potential for the production of cellulase enzyme. SERS was employed to detect the changes in the cells of mutated A. niger fungal strains, including one mutant producing low levels of an enzyme and another mutant producing high levels of the enzyme as a result of mutation as compared with an unmutated fungal strain as a control sample.