This version is available at https://strathprints.strath.ac.uk/62807/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.Author Accepted Manuscript: Paper presented at IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), 5-7 September 2016, Qingdao, China. Accepted paper (3 pages) published online by IEEE Xplore, 09 March 2017. doi: 10.1109/UCMMT.2016 1 Abstract-To rapidly prototype novel mm-wave and THz sources there is a requirement to create intricate structures to produce and radiate electromagnetic fields. The motivation for this work is to create improved electron-beam-driven, vacuum electronic mm-wave and sub-THz sources by exploiting dispersion engineering. Although such structures can be manufactured by other techniques, additive manufacturing has proven to be quick, reliable and cost-effective. This research is allowing the prototyping of novel mm-wave and sub-THz coherent sources.