Grade assessment of steel is generally performed via the metallographic method, which is timeconsuming and is not able to provide the elemental distribution information. In this paper, we present a method to measure the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy (LIBS). The measurement is performed in two basic steps: steel samples are polished using metallographic sand paper and the Al 2 O 3 inclusion number and size distribution in a marked area are observed using scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDS) for further LIBS scanning analysis. The threshold intensity that distinguishes soluble aluminum and insoluble aluminum inclusions is determined using LIBS combined with the SEM/EDS statistical data. Carbon steel (the sample number is S9256) and bearing steel (the sample number is GCr15) are analyzed in scanning mode, and the number of Al 2 O 3 inclusions in different size ranges is obtained from the statistical information derived from the Al 2 O 3 size calibration curve. According to heavy and thin series for globular oxide inclusions grade assessment, the method we propose is comparable to the traditional metallographic method in terms of accuracy; however, the process is simplified and the measurement speed is significantly improved.