The predominant method used for the cultivation of European kelp involves seeding onto twine spools. The selection of a suitable twine is essential. In four experiments, synthetic and natural polymer twines were seeded with either meiospore or juvenile sporophytes of Saccharina latissima. Development was monitored over both the hatchery and outplanting phase at an experiment seaweed farm, Scotland, UK. Twisted twine seeded with meiospores gave 37 ± 21% higher biomass yield than the braided form, despite 46 ± 10% lower sporophyte density during the hatchery period. Twisted twine was also more favourable when sporophyte seeding, increasing juvenile retention by 140%. Three-month-old sporophytes had 50% weaker bioadhesion on polyamide (PA), polyester (PES) and polypropylene (PP) compared to polyvinyl alcohol (PVA). This was reflected in 11-24% higher biomass on PVA following outplanting. However, if the twine surface was treated by corona discharge before seeding, PA, PES and PP achieved an equivalent biomass to PVA. Jute and sisal twine had a toxic effect on the development of meiospores. In contrast, seeding with sporophytes was successful onto jute and sisal, but bioadhesion was weak. Finally, cotton was moderately toxic to meiospores but also had a bioadhesion strength and biomass yield comparable to PVA. We conclude that PVA and corona-treated synthetic twines are excellent for either meiospore or sporophyte seeding. Cotton is a very promising biodegradable twine, although further research is needed to optimise its physical structure. We also conclude that results during the hatchery period do not predict the success of seeded twine following outplanting.