Background Laminectomy is a traditional method for treating lumbar diseases; however, the destruction of the posterior structures may cause postoperative symptoms. An individualized poly-ether-ether-ketone (PEEK) artificial lamina was designed to reconstruct the posterior structures after laminectomy. This study aimed to explore the biomechanical effects of reconstruction of the posterior structures with an individualized PEEK artificial lamina using validated finite element models. Objective To examine the biomechanical effects of individualized PEEK artificial lamina on postlaminectomy lumbar. Methods A finite element (FE) model of L3-5 was developed based on computed tomography images. Four surgical models (laminectomy, artificial lamina alone, ligament reconstruction, and osseointegration) were constructed, representing different stages of L4 artificial lamina implantation. The range of motion (ROM), intradiscal pressure (IDP), stresses in the annulus fibrosus at the surgical level and cephalad adjacent level, and stresses in the artificial lamina and screws were measured. Results The ROM, IDP, and stresses in the annulus fibrosus of the different artificial lamina models decreased compared to those of the laminectomy model at both surgical and adjacent levels for all motion patterns, most notably in the osseointegration model. In addition, the results of the stresses in the implants showed that the artificial lamina could enhance the lumbar isthmus and disperse the abnormally concentrated stresses after laminectomy. Conclusion The application of a PEEK artificial lamina has the potential to stabilize the postlaminectomy lumbar spine and prevent adjacent segment disease (ASD) and iatrogenic lumbar deformities, resulting in a reduction in the incidence of post-lumbar surgery syndrome.