High quality surface passivation on bulk-GaAs substrates and epitaxial-GaAs/Ge (epi-GaAs) layers were achieved by using atomic layer deposited (ALD) titanium aluminum oxide (TiAlO) alloy dielectric. The TiAlO alloy dielectric suppresses the formation of defective native oxide on GaAs layers. X-ray photoelectron spectroscopy (XPS) analysis shows interfacial arsenic oxide (As(x)O(y)) and elemental arsenic (As) were completely removed from the GaAs surface. Energy dispersive X-ray diffraction (EDX) analysis and secondary ion mass spectroscopy (SIMS) analysis showed that TiAlO dielectric is an effective barrier layer for reducing the out-diffusion of elemental atoms, enhancing the electrical properties of bulk-GaAs based metal-oxide-semiconductor (MOS) devices. Moreover, ALD TiAlO alloy dielectric on epi-GaAs with AlGaAs buffer layer realized smooth interface between epi-GaAs layers and TiAlO dielectric, yielding a high quality surface passivation on epi-GaAs layers, much sought-after for high-speed transistor applications on a silicon platform. Presence of a thin AlGaAs buffer layer between epi-GaAs and Ge substrates improved interface quality and gate dielectric quality through the reduction of interfacial layer formation (Ga(x)O(y)) and suppression of elemental out-diffusion (Ga and As). The AlGaAs buffer layer and TiAlO dielectric play a key role to suppress the roughening, interfacial layer formation, and impurity diffusion into the dielectric, which in turn largely enhances the electrical property of the epi-GaAs MOS devices.