Sensors based on Fiber Bragg Grating (FBG) have remarkable benefits like small size, fast response, wide sensing distribution, and immunity to electromagnetic interference, allowing for their widespread application in numerous domains of physical parameter measurement in industrial engineering. In this work, a temperature-independent sensor of the magnetic field based on FBG and the magnetostrictive material Terfenol-D is suggested. By exploiting the distributed sensing characteristic of FBG, a sensing structure that remains unaffected by temperature is designed. The results demonstrate that within the magnetic induction intensity range of 0 mT to 50 mT, the sensitivity of the sensor can reach 7.382 pm/mT, exhibiting good linearity and repeatability. Compared with the control experiment and other sensors of the magnetic field containing Terfenol-D, the sensor has higher sensitivity, better repeatability, and good temperature stability.