This study investigated the preparation of silver adhesives applied to a light‐emitting diode (LED) device as die‐attach materials consisting of silver particles, on epoxy resin, curing agents, and accelerants for complete curing at 150 °C for 30 min. For the epoxy resin, this study used 3,4‐epoxycyclohexyl‐methyl‐3,4‐epoxycyclohexanecarboxylate mixed with different types of anhydride curing agents such as 4‐methylcyclohexane‐1,2‐dicarboxylic anhydride and hexahydrophthalic anhydride as well as imidazole accelerants such as 2‐ethyl‐4‐methyl‐1H‐imidazole‐1‐propanenitrile, 2‐phenylimidazole, 2‐methylimidazole, 2‐phenyl‐2‐imidazoline, and 1,2‐dimethylimidazole. In addition, different size of silver particles and hybrid silver particles were used for the electrical resistivity and thermal conductivity of silver adhesives. Differential scanning calorimetric (DSC) measured conversion of silver adhesives based on different types and contents of the curing agents and accelerants under heating. The silver particles' distribution of silver adhesive also affected electrical resistance, as proved by scanning electronic microscopy (SEM) and four‐point probe. The obtained results showed that the silver adhesive containing an 100 wt % of epoxy resin mixed with 85 wt % of hexahydrophthalic anhydride, 1.0 wt % (weight of epoxy resin) of 2‐ethyl‐4‐methyl‐1H‐imidazole‐1‐propanenitrile, and 80 wt % (weight of epoxy resin) of hybrid silver particles (40 wt % 15 μm and 40 wt % 1.25 μm) was perfect, having the lowest electrical resistivity at 1.11 × 10−4 Ω·cm and good thermal conductivity at 3.2 W/m·K. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43587.