Due to the wide application of composite insulators in the power industry, the insulator performance is challenged by various environments. To determine the flashover performance of rime-iced composite insulator, laboratory investigation was carried out in an artificial climate chamber to simulate different rime-ice morphology on the insulator surface. The configuration and characteristics of the rime-ice were demonstrated to establish the relationship between the rime-ice parameters and the flashover performance. In accordance with the discharge phenomena, the transition of leakage current (LC) until the flashover was analyzed by using a recurrent plot approach. After extracting the high frequency components by using a wavelet transform technique, the LC just before the flashover was extended to m dimensional phase space based on a phase space reconstructed method. The recurrent plot was obtained to reveal the non-linear characteristics of LC for identifying the dynamic behaviors on the insulator surface. It is shown that the propagation and properties of the discharges can be graphically projected on the topological structure of recurrent plot as a function of the rime-ice parameters. The process and underlying mechanism of flashover performance of rime-iced composite insulator can be visually reflected by the recurrent plot and the quantitative indicators of LC.Index Terms -composite insulator, rime-iced condition, flashover, leakage current, recurrent plot, dynamic behavior.