Living cells have become ideal therapeutic agents for cancer treatment owing to their innate activities, such as efficient tumor targeting and delivery, easy engineering, immunomodulatory properties, and fewer adverse effects. However, cell agents are often fragile to rigorous tumor microenvironment (TME) and limited by inadequate therapeutic responses, leading to unwanted treatment efficacy. Cell nanomodification, particularly the cell surfacenanoengineering has emerged as reliable and efficient strategy that not only combines cell activity properties with nanomaterials but also endows them with extra novel functions, enabling to achieve remarkable treatment results. In this review, we systematically introduce two major strategies have been adopted to develop cell surface engineering with nanomaterials, mainly including living cell nano-backpacks and cell membrane-mimicking nanoparticles (NPs). Based on various functional NPs and cell types, we focus on reviewing the cell-surface nanoengineering for targeted drug delivery, immune microenvironment regulation, and precisely antitumor therapy. The advances and challenges of cell surface-nanoengineered antitumor agents for cancer therapy applications are further discussed in future clinical practice. This review provides an overview of the advances in cell surface-engineering for targeting immunoregulation and treatment and could contribute to the future of advanced cell-based antitumor therapeutic applications.