The laser chemical machining is a non-conventional substractive processing method. It is based on the laser-activation of a material dissolution of metals in electrolyte ambient via local-induced temperature gradients and allows a gentle and smooth processing of especially temperature-sensitive metals. However, the material removal is characterized by a narrow process window and is restricted by occurring disturbances, which are supposed to be related to the localized electrolyte boiling. In order to control the removal quality and avoid disturbances, the correlation between the laser-induced temperatures and the resulting removal geometry has to be better understood. In this work an analytical modeling of the laser-induced temperatures at the surface of titanium based on a Green-function approach is presented. The main influencing factors (laser, electrolyte, material) as well as possible heat transfer into the electrolyte are included and discussed. To verify the calculated temperatures, single spot experiments are performed and characterized for titanium in phosphoric acid solution within laser irradiation of 1 s. The correlation between the temperature distribution and the resulting removal geometry is investigated based on a spatial superposition. Thereby, the bottom limit temperature is found to range between 63˚C and 70˚C whereas the upper limit is related to the nucleate boiling regime. Based on the performed correlation an indicator is identified to predict the ruling removal regime and thereby to reduce the experimental expenditure.