This paper investigates charged black holes within the framework of quintic quasi-topological gravity, focusing on their thermodynamics, conserved quantities, and stability. We construct numerical solutions and explore their thermodynamic properties, supplemented by the study of analytically solvable special cases. By verifying the first law of thermodynamics, we validate our approach and compare our findings to those of Einstein gravity. The physical properties of the solutions are examined across anti-de Sitter, de Sitter, and flat spacetime backgrounds. Our analysis reveals that anti-de Sitter solutions demonstrate thermal stability, while de Sitter and flat solutions lack this property. Finally, we discuss the implications of our results and propose potential avenues for future research in this field.