Electroclinic measurements, in which an applied electric field E induces a rotation Δθ ([proportional]E) of the liquid crystal director about the electric field axis in a chiral environment, were performed on several configurationally achiral liquid crystals in the presence of an imposed helical director profile. This imposed twist establishes a chiral symmetry environment for the liquid crystal. It was observed that a conformationally racemic mesogen possessing a flexible phenyl benzoate core exhibits a measurable electroclinic response in the nematic phase. On the other hand, when the phenyl benzoate mesogen is mixed with a mesogen containing a rigid, conformationally achiral core (fluorenone), or with a racemic dopant with an axially chiral core that mimics a mesogen having rigid right- and left-handed conformations (2,2'-spirobiindan-1,1'-dione), the magnitudes of the electroclinic responses were found to decrease sharply, apparently going to zero when extrapolated to the pure 2,2'-spirobiindan-1,1'-dione or fluorenone limit. (Note that neither of these additives possesses a nematic phase.). The results suggest that the flexibility of the core and its ability to deracemize conformationally in order to compensate the elastic energy cost of the imposed twist is the primary mechanism behind the observed electroclinic response.