Shell-like, double curved and thus above-average performance structures, are usually produced monolithically on site. For industrial advancement, however, they must be divided into transportable modules which can be assembled on the construction site (design for assembly). Models are lattice shells made of steel and glass, in which predominantly flat sub-surfaces (modules) are used. Therefore, the main question is: Which modularizations are suitable for flow production with mineral building materials? In this paper designed free-form surface is going to be discretized as PQ circular mesh system, suitable modules for 3D concrete printing. Moreover, the multi-criteria optimization is done with Response Surface Methodology (RSM) in order to get optimal final shape. The goal is to start from the arbitrary shape, that can be generated from two curves, with possible two-way division into modules and compare it with the resulted discretized PQ circular mesh system, realized with new algorithm. The comparison can be defined through two main criteria: geometrical and structural.