2011
DOI: 10.5614/itbj.sci.2011.43.3.6
|View full text |Cite
|
Sign up to set email alerts
|

Surfaces with Prescribed Nodes and Minimum Energy Integral of Fractional Order

Abstract: his paper presents a method of finding a continuous, real-valued, function of two variables z = u(x,y) defined on the square S := [0,1]^2, which minimizes an energy integral of fractional order, subject to the condition u(0,y) = u(1,y) = u(x,0) = u(x,1) = 0 and u(x_i,y_j) = c_{ij}, where 0 < x_1 < ... < x_M < 1, 0 < y_1 < ... є ℝ are given. The function is expressed as a double Fourier sine series, and an iterative procedure to obtain the function will be presented

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2011
2011
2014
2014

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…melalui perhitungan yang telah diuraikan pada [2] dan [4] serta menggunakan software sampai iterasi-1225, diperoleh data berupa 20 buah besaran energi minimum yang dihasilkan dari 20 nilai  dengan sebaran antara 1.00 dan 2.00. …”
Section: unclassified
“…melalui perhitungan yang telah diuraikan pada [2] dan [4] serta menggunakan software sampai iterasi-1225, diperoleh data berupa 20 buah besaran energi minimum yang dihasilkan dari 20 nilai  dengan sebaran antara 1.00 dan 2.00. …”
Section: unclassified
“….) The 1-and 2-dimensional cases have been studied by Gunawan et al [2,3], who show inter alia that the value α > d/2 is a necessary and sufficient condition for the solution to be continuous. As one might expect, the larger the value of α, the smoother the solution.…”
Section: Introductionmentioning
confidence: 99%