Carbon nanotubes are used to provide increased electrical conductivity for polymer matrix materials, thus offering a method to monitor the structure's health. This work investigates the effect of impact damage on the electrical properties of multiscale composite samples, prepared with woven fiberglass reinforcement and epoxy resin modified with as-received multi-walled carbon nanotubes (MWCNTs). Moreover, this study addresses potential bias from manufacturing, and investigates the effectiveness of resistance measurements using two-and four-point probe methods. Transmission electron microscopy and static tensile tests results were used to evaluate, respectively, the dispersion of MWCNTs in the epoxy resin and the influence of the incorporation of these nanoparticles on the static tensile properties of the matrix, and interpret results from the resistance measurements on impacted specimens. In this study, the four-point probe method is shown to be much more repeatable and reliable than the two-point probe method.