Metal nanoparticles have been recognized and widely explored as unique catalysts for carbon−carbon coupling reactions. However, due to their extreme tendency to agglomeration, the generation and stabilization of metal nanoparticles in a porous matrix is an important research field. Herein, novel mesoporous phenolic resin-supported palladium nanoparticles (Pd@NH 2 -MPRNs) were prepared via direct anionic exchange followed by gentle reduction by using primary amine-functionalized ordered mesoporous phenolic resin as the support. The obtained Pd@NH 2 -MPRN material still possessed large surface area and ordered two-dimensional hexagonal mesoporous structure. Meanwhile, uniform and well-dispersed palladium nanoparticles were formed in the mesoporous channels, which could be attributed to an efficient complexation and stabilization effect derived from the primary amine groups. As a result, it can promote Suzuki coupling of less activated aromatic bromides to various biaryls in water with high conversion and selectivity. This excellent performance was attributed to small particle sizes, ordered mesopores, and a hydrophobic pore surface, which resulted in the decreased diffusion limitation and the increased active site accessibility. It is noted that it is competitive with the best palladium catalysts known for water-medium Suzuki coupling reaction, and it can be reused at least seven times without significant reduction in the catalytic efficiency, showing a good recyclability. Therefore, this work provides a new potential platform for designing and fabricating robust ordered mesoporouspolymer-supported metal nanoparticles for various catalytic applications.