Auto-detection of diseases has become a prime issue in medical sciences as population density is fast growing. An intelligent framework for disease detection helps physicians identify illnesses, give reliable and consistent results, and reduce death rates. Coronavirus (Covid-19) has recently been one of the most severe and acute diseases in the world. An automatic detection framework should therefore be introduced as the fastest diagnostic alternative to avoid Covid-19 spread. In this paper, an automatic Covid-19 identification in the CT scan and chest X-ray is obtained with the help of a combined deep learning and multi-level feature extraction methodology. In this method, the multi-level feature extraction approach comprises GIST, Scale Invariant Feature Transform (SIFT), and Convolutional Neural Network (CNN) extract features from CT scans and chest X-rays. The objective of multi-level feature extraction is to reduce the training complexity of CNN network, which significantly assists in accurate and robust Covid-19 identification. Finally, Long Short-Term Memory (LSTM) along the CNN network is used to detect the extracted Covid-19 features. The Kaggle SARS-CoV-2 CT scan dataset and the Italian SIRM Covid-19 CT scan and chest X-ray dataset were employed for testing purposes. Experimental outcomes show that proposed approach obtained 98.94% accuracy with the SARS-CoV-2 CT scan dataset and 83.03% accuracy with the SIRM Covid-19 CT scan and chest X-ray dataset. The proposed approach helps radiologists and practitioners to detect and treat Covid-19 cases effectively over the pandemic.