The anatomy of the branches of the anterior cerebral artery (ACA) near the anterior communicating artery (ACoA) complex were investigated to minimize neurovascular morbidity caused by surgical procedures performed in this region. Thirty-one cadaver brains were perfused with colored silicone, fixed, and studied under the operating microscope. The recurrent artery of Heubner (RAH), orbitofrontal artery (OFA), and frontopolar artery (FPA) were identified as the branches of the ACA arising near the ACoA complex. The OFA and FPA were identified in all hemispheres. Forty-nine (64%) of a total of 77 RAHs arose from the A 2 segment. The OFA always arose from the A 2 segment, was consistently the smallest branch, and coursed to the gyrus rectus, olfactory tract, and olfactory bulb. The mean distance between the ACoA and the OFA was 5.96 mm. The FPA arose from the A 2 segment in 95% of the specimens, and coursed to the medial subfrontal region. The mean distance between the ACoA and the FPA was 14.6 mm. The RAH, OFA, and the FPA are three branches that arise from the ACA near the ACoA complex. These vessels have similar diameters, but can be distinguished by the final destination. Distinguishing these vessels is important since the consequences of injury or occlusion of the FPA and OFA are significantly less than of the RAH.