The development of the gut from endodermal tissue to an organ with multiple distinct structures and functions occurs over a prolonged time during embryonic days E10.5-E14.5 in the mouse. During this process, one major event is innervation of the gut by enteric neural crest cells (ENCC) to establish the enteric nervous system (ENS). To understand the molecular processes underpinning gut and ENS development, we generated RNA-seq profiles from wildtype mouse guts at E10.5, E12.5 and E14.5 from both sexes. We also generated these profiles from homozygous Ret null embryos, a model for Hirschsprung disease (HSCR), in whom the ENS is absent. These data reveal four major features: (1) between E10.5 to E14.5 the developmental genetic programs change from expression of major transcription factors (TF) and its modifiers to genes controlling tissue (epithelium, muscle, endothelium) specialization; (2) the major effect of Ret is not only on ENCC differentiation to enteric neurons but also on the enteric mesenchyme and epithelium; (3) a muscle genetic program exerts significant effects on ENS development, and (4) sex differences in gut development profiles are minor. The genetic programs identified, and their changes across development, suggests that both cell autonomous and non-autonomous factors, and interactions between the different developing gut tissues, are important for normal ENS development and its disorders.
Significance statementThe mammalian gut is a complex set of tissues formed during development by orchestrating the timing of expression of many genes. Here we uncover the identity of these genes, their pathways and how they change during gut organogenesis. We used RNA-seq profiling in the wildtype mouse gut in both sexes during development (E10.5 -E14.5), as well as in a Ret null mouse, a model of Hirschsprung disease (HSCR). These studies have allowed us to expand the universe of genes and developmental processes that contribute to enteric neuronal innervation and to its dysregulation in disease.