Specific melatonin binding sites in the harderian gland of both rat and Syrian hamster were studied using [125I]melatonin. In both species, binding of [125I]melatonin by harderian gland membranes exhibited properties such as dependence on time, temperature, membrane concentration, saturability, and high specificity. Only one class of high-affinity binding sites was found with a Kd of 0.19 and 6.47 nM for the rat and Syrian hamster, respectively. The binding capacity in the rat harderian gland was 4.00 fmol/mg protein; in the Syrian hamster it was 7.58 fmol/mg protein. In the rat, no sex differences were found in the binding of the tracer to the membranes. However, in the Syrian hamster, binding of [125I]melatonin by the harderian gland was twice higher in the female than in the male. No changes were found in the Kd values (6.47 vs. 6.94 nM), while binding capacity was significantly increased in the female (13.50 fmol/mg protein) when compared to the male hamster (7.58 fmol/mg protein). Binding of [125I]melatonin by the harderian gland of male hamsters was modified by castration but not by melatonin treatment. Castration induced an increase of binding up to the level of females. However, chronic melatonin administration did not alter the [125I]melatonin binding in either intact or gonadectomized male hamsters. Binding studies also showed diurnal variations. There was a diurnal rhythm of [125I]melatonin binding by Syrian hamster harderian glands with the peak at the end of the light period and the trough late in the dark period. This rhythm in the binding is observed in both male and female hamsters, although binding in females was always higher than that in males. Serum melatonin levels also demonstrated a diurnal variation with a well-established nocturnal peak of melatonin at 4.00 h and a fall after light onset at 6.00 h. As it has been previously described, nocturnal levels of serum melatonin in the male Syrian hamster were higher than those of the female hamster. Results confirm the presence of melatonin binding sites in the harderian gland of rats and Syrian hamsters, suggesting that these binding sites may mediate, in addition to other effects, the regulation of melatonin in the harderian gland.