2016
DOI: 10.21037/jtd.2016.12.72
|View full text |Cite
|
Sign up to set email alerts
|

Surgical technique: establishing a pre-clinical large animal model to test aortic valve leaflet substitute

Abstract: To overcome current limitations of valve substitutes and tissue substitutes the technology of tissue engineering (TE) continues to offer new perspectives in congenital cardiac surgery. We report our experiences and results implanting a decellularized TE patch in nine sheep in orthotropic position as aortic valve leaflet substitute. Establishing the animal model, feasibility, cardiopulmonary bypass issues and operative technique are highlighted. side effect of lifelong anticoagulation. The lack of an ideal valv… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 23 publications
0
1
0
Order By: Relevance
“…Compared to a human, structural changes and calcification of a cardiac valve (primary outcome parameter) occurs much earlier in an ovine. Because 1 year of a sheep life roughly equals 7 years of a human's life 'long-term' outcome results may be acquired in shorter time periods (ratio 1:7); (II) From other pre-clinical experiments using off-theshelf de-cellularized TE patches (17,18) as aortic valve leaflet (19) we learned that the potential benefits of a thoracotomy outweighed those of a sternotomy, especially when considering a chronic study. According to our experience using a LLT via the fourth intercostal space (i) offers good exposure to the pulmonary trunk and the pulmonary valve, (ii) allows reliably the cannulation of the descending aorta and the right atrium via the right auricle and (iii) promotes early extubation and sufficient spontaneous breathing as postoperative pain is diminished in these animals normally lying on the sternum; (III) The exposure of the ascending aorta, clamping and infusion of cardioplegia is technically challenging in sheep due to the short size of the ascending aorta.…”
Section: Commentsmentioning
confidence: 99%
“…Compared to a human, structural changes and calcification of a cardiac valve (primary outcome parameter) occurs much earlier in an ovine. Because 1 year of a sheep life roughly equals 7 years of a human's life 'long-term' outcome results may be acquired in shorter time periods (ratio 1:7); (II) From other pre-clinical experiments using off-theshelf de-cellularized TE patches (17,18) as aortic valve leaflet (19) we learned that the potential benefits of a thoracotomy outweighed those of a sternotomy, especially when considering a chronic study. According to our experience using a LLT via the fourth intercostal space (i) offers good exposure to the pulmonary trunk and the pulmonary valve, (ii) allows reliably the cannulation of the descending aorta and the right atrium via the right auricle and (iii) promotes early extubation and sufficient spontaneous breathing as postoperative pain is diminished in these animals normally lying on the sternum; (III) The exposure of the ascending aorta, clamping and infusion of cardioplegia is technically challenging in sheep due to the short size of the ascending aorta.…”
Section: Commentsmentioning
confidence: 99%