Abstract:Chemical plant design and optimisation have proven challenging due to the complexity of these real-world systems. The resulting complexity translates into high computational costs for these systems' mathematical formulations and simulation models. Research has illustrated the benefits of using machine learning surrogate models as substitutes for computationally expensive models during optimisation. This paper extends recent research into optimising chemical plant design and operation. The study further explore… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.