One expanding area of bioinformatics is medical diagnosis through the categorization of biomedical characteristics. Automatic medical strategies to boost the diagnostic through machine learning (ML) methods are challenging. They require a formal examination of their performance to identify the best conditions that enhance the ML method. This work proposes variants of the Voting and Stacking (VC and SC) ensemble strategies based on diverse auto-tuning supervised machine learning techniques to increase the efficacy of traditional baseline classifiers for the automatic diagnosis of vertebral column orthopedic illnesses. The ensemble strategies are created by first combining a complete set of auto-tuned baseline classifiers based on different processes, such as geometric, probabilistic, logic, and optimization. Next, the three most promising classifiers are selected among k-Nearest Neighbors (kNN), Naïve Bayes (NB), Logistic Regression (LR), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Decision Tree (DT). The grid-search K-Fold cross-validation strategy is applied to auto-tune the baseline classifier hyperparameters. The performances of the proposed ensemble strategies are independently compared with the auto-tuned baseline classifiers. A concise analysis evaluates accuracy, precision, recall, F1-score, and ROC-ACU metrics. The analysis also examines the misclassified disease elements to find the most and least reliable classifiers for this specific medical problem. The results show that the VC ensemble strategy provides an improvement comparable to that of the best baseline classifier (the kNN). Meanwhile, when all baseline classifiers are included in the SC ensemble, this strategy surpasses 95% in all the evaluated metrics, standing out as the most suitable option for classifying vertebral column diseases.