AIAA SCITECH 2022 Forum 2022
DOI: 10.2514/6.2022-0508
|View full text |Cite
|
Sign up to set email alerts
|

Surrogate Unsteady Aerodynamic Modeling with Autoencoders and LSTM Networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 25 publications
0
1
0
Order By: Relevance
“…LSTMs also employ gates as a tool for managing and arranging writing, i.e., selectively written, read, and forgotten information is stored in the cell memory. Image segmentation [43], video description [44], and 3D object reconstruction [45], aircraft Operational Loads Monitoring [46], Aerodynamic Modeling [47] are all examples of how LSTMs have been utilized.…”
Section: Recurrent Neural Networkmentioning
confidence: 99%
“…LSTMs also employ gates as a tool for managing and arranging writing, i.e., selectively written, read, and forgotten information is stored in the cell memory. Image segmentation [43], video description [44], and 3D object reconstruction [45], aircraft Operational Loads Monitoring [46], Aerodynamic Modeling [47] are all examples of how LSTMs have been utilized.…”
Section: Recurrent Neural Networkmentioning
confidence: 99%