Vancomycin-resistant enterococci (VRE) are considered one of the main nosocomial pathogens due to their increasing antibiotic resistance and ability to cause life-threatening infections in humans. This study included VRE isolates obtained from various specimens including urine, blood, faeces, wounds, sputum, and oral cavity wash. Of the 37 strains, 30 (81.1%) and 7 (18.9%) were identified by MALDI TOF as Enterococcus faecium and Enterococcus faecalis, respectively. The clinical vancomycin-resistant enterococci exhibited multi-drug resistance (MDR). Apart from vancomycin, the enterococci exhibited resistance to penicillins (89.1 to 100%), fluoroquinolones (100%), rifampicin (86.5%), tetracycline (27%), aminoglycosides (56.8 to 86.5%), quinupristin–dalfopristin (35.1%), and chloramphenicol (10.8%). Moreover, resistance to linezolid and tigecycline emerged among the tested vancomycin-resistant enterococci. The analysis of aminoglycoside modifying enzyme (AME) genes showed the presence of bifunctional aac(6′)-Ie-aph(2″)-Ia genes contributed to high-level aminoglycoside resistance (HLAR) in the E. faecalis and E. faecium isolates. The other AME gene, i.e., aph(3′)-IIIa, was also found in the VRE isolates. All strains carried the vanA gene. Enterococci from colonised gastrointestinal tracts (1/2.7%) and from infection (6/16.2%) showed cytotoxic activity against the human epithelial cell line HEp-2.