Increased connectivity with the mainland has led to the arrival of many invasive species to the Galápagos Islands, including novel pathogens, threatening the archipelago's unique fauna. Here we consider the potential role of the mosquito Aedes taeniorhynchus in maintaining the flavivirus West Nile virus [WNV] should it reach the islands. We report on three components of vectorial capacity - vector competency, distributional abundance and host-feeding. In contrast to USA strains, Galápagos A. taeniorhynchus is a competent and efficient WNV vector, capable of transmission at 5 days post-exposure. Based on 25 blood-meals, mammalian feeding suggests a potential bridge vector role should contact with key amplification taxa occur. Vector population abundance is driven primarily by climatic factors, peaking between January and March. As a ubiquitous competent vector, A. taeniorhynchus may facilitate future WNV establishment, therefore it is vital to ensure the biosecurity of Galápagos to prevent introductions of pathogens such as WNV.