Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Pepper stem rot is a disease caused by Sclerotium delphinii, a necrotrophic pathogen and a natural soil inhabitant. Identifying genotypes of Capsicum resistant to the pathogen and applying silicon (Si) can be effective management measures. The objective of the study was to identify sources of resistance in 24 accessions of Capsicum spp. against S. delphinii, and to evaluate the potential of sodium silicate (Si) to induce resistance. Two experiments were conducted: In Experiment I, the resistance reaction of Capsicum in a greenhouse was evaluated. The experiment was conducted in two periods of the year (July and November 2019). In Experiment II, the effect of Si on Capsicum resistance was evaluated. The experimental design used in Experiment I employed randomized blocks in a factorial design of 2 (isolates) x 24 (accessions), with five replications. For Experiment II, six accessions were selected with contrasting resistance responses observed in Experiment I, in a factorial design of 1 (isolate) x 6 (accessions) x 4 (doses: 0.0, 0.025, 0.05, and 0.1 mL per vase). Accessions BGH 71 and BAGC 134 showed greater resistance to the pathogen. Accession BAGC 134 demonstrated high resistance stability in both periods and against the two isolates tested. Si doses had no significant effect on the resistance reaction. Therefore, the genotypes BGH 71 and BAGC 134 have the potential to be used in breeding programs for Capsicum for resistance to S. delphinii for control of stem rot.
Pepper stem rot is a disease caused by Sclerotium delphinii, a necrotrophic pathogen and a natural soil inhabitant. Identifying genotypes of Capsicum resistant to the pathogen and applying silicon (Si) can be effective management measures. The objective of the study was to identify sources of resistance in 24 accessions of Capsicum spp. against S. delphinii, and to evaluate the potential of sodium silicate (Si) to induce resistance. Two experiments were conducted: In Experiment I, the resistance reaction of Capsicum in a greenhouse was evaluated. The experiment was conducted in two periods of the year (July and November 2019). In Experiment II, the effect of Si on Capsicum resistance was evaluated. The experimental design used in Experiment I employed randomized blocks in a factorial design of 2 (isolates) x 24 (accessions), with five replications. For Experiment II, six accessions were selected with contrasting resistance responses observed in Experiment I, in a factorial design of 1 (isolate) x 6 (accessions) x 4 (doses: 0.0, 0.025, 0.05, and 0.1 mL per vase). Accessions BGH 71 and BAGC 134 showed greater resistance to the pathogen. Accession BAGC 134 demonstrated high resistance stability in both periods and against the two isolates tested. Si doses had no significant effect on the resistance reaction. Therefore, the genotypes BGH 71 and BAGC 134 have the potential to be used in breeding programs for Capsicum for resistance to S. delphinii for control of stem rot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.