The Internet of Medical Things (IoMT) has overcome the privacy challenges of E-healthcare-based Internet of Things (IoT) systems to protect the joined people’s private records to IoMT infrastructures and support their information security in different layers. By deploying various medical applications, security and privacy are challenging for the IoMT via rising communications between its layers and nodes. Some case studies aimed to solve the issues and provided various methods and protocols to identify the malicious data and information, which had almost overlooked application and service priority to targeting the research and satisfying security. We addressed the dependability and privacy problems of IoMT-based applications by presenting an intelligent algorithm for node mapping and flexible clustering (NFC) via defining a graph and employing a neural network (NN). This work proposes a flexible clustering method to categorize the healthcare service providers for timely detecting faults and identifying the proper servers to join the cluster by considering service and application priority. We improve the application dependability and privacy by about 77.3–83.2% via pruning the defective nodes and employing the neighbor components to support faulty devices’ role. By removing the failed or faulty nodes, the study reduces communication delay and energy consumption, approximately 19.3–21.7% and 10.3–11.8%, respectively.