Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly With 2009 28th Chinese Control Conference 2009
DOI: 10.1109/cdc.2009.5400085
|View full text |Cite
|
Sign up to set email alerts
|

Survey on computational complexity with phase transitions and extremal optimization

Abstract: Applying statistical mechanics to search problems in AI, decisions and optimization has been one of the powerful channels to solve NP-hard problems. Extensive analytical and experimental research has shown that the "phase transition" phenomenon in search space is often associated with the hardness of complexity. A Bak-Sneppen (BS) model based general-purpose heuristic method, called extremal optimization (EO), proposed by Boettcher and Percus from physics society may perform very well, especially near the phas… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
7
0

Year Published

2010
2010
2016
2016

Publication Types

Select...
6
3
1

Relationship

4
6

Authors

Journals

citations
Cited by 19 publications
(7 citation statements)
references
References 102 publications
(161 reference statements)
0
7
0
Order By: Relevance
“…Basic idea of EO is to eliminate the unexpected component in the solution and generate a new one to replace it. EO shows good performance on many NP problems [12], such as graph partitioning, Traveling Salesman Problem (TSP), Ising spin, combinational auction, etc. combinatorial optimization problems.…”
Section: Extreme Optimization For Dyeing Schedulingmentioning
confidence: 99%
“…Basic idea of EO is to eliminate the unexpected component in the solution and generate a new one to replace it. EO shows good performance on many NP problems [12], such as graph partitioning, Traveling Salesman Problem (TSP), Ising spin, combinational auction, etc. combinatorial optimization problems.…”
Section: Extreme Optimization For Dyeing Schedulingmentioning
confidence: 99%
“…During the past few decades, the applications of statistical physics have provided new insights into analyzing and solving combinatorial optimization problems, which has been an attractive multidisciplinary research field in physics and computer science [8][9][10][11][12][13][14]37]. The well-known algorithmic examples include classical simulated annealing (SA) [15], threshold accepting [16], Tsallis statistics [10,16,17], thermal cycling [18], iterative partial transcription [19], waiting time method [20] and survey propagation [9] and so on.…”
Section: Introductionmentioning
confidence: 99%
“…As a consequence, the basic EO algorithm and its modified versions have been successfully applied to a variety of benchmark and real-world engineering optimization problems, such as graph partitioning [9], graph coloring [10], travelling salesman problem [11,12], maximum satisfiability (MAX-SAT) problem [13,14], and steel production scheduling [15]. The more comprehensive introduction concerning EO is referred to in the surveys [16,17].…”
Section: Introductionmentioning
confidence: 99%