Research Data Management (RDM) promises to make research outputs more transparent, findable, and reproducible. Strategies to streamline data management across disciplines are of key importance. This paper presents results of an institutional survey (N = 258) at a medium-sized Austrian university with a STEM focus, supplemented with interviews (N = 18), to give an overview of the state-of-play of RDM practices across faculties and disciplinary contexts.RDM services are on the rise but remain somewhat behind leading countries like the Netherlands and UK, showing only the beginnings of a culture attuned to RDM. There is considerable variation between faculties and institutes with respect to data amounts, complexity of data sets, data collection and analysis, and data archiving. Data sharing practices within fields tend to be inconsistent.RDM is predominantly regarded as an administrative task, to the detriment of considerations of good research practice. Problems with RDM fall in two categories: Generic problems transcend specific research interests, infrastructures, and departments while discipline-specific problems need a more targeted approach. The paper extends the state-of-the-art on RDM practices by combining in-depth qualitative material with quantified, detailed data about RDM practices and needs. The findings should be of interest to any comparable research institution with a similar agenda.Recent years have seen rapid growth in the adoption of Research Data Management (RDM) policies across research institutions. Accompanying these developments, there is now a quickly growing literature studying data