Product design and manufacturing leverage 3D scanning for various applications. This study aims to investigate the effectiveness of 3D scanning in furniture production by surveying the literature and showcasing four real-world case studies. The literature review reveals that 3D data acquired from real-world objects have applications in research, rapid prototyping, restoration, and preservation of antique furniture, optimizing CNC machining processes, and measuring furniture components for quality control. The case study descriptions demonstrated the circumstances, rationale, and methodology for 3D scanning. All the case studies analyzed stem from the collaboration between the Laboratory for Product Development and Design at the Faculty of Mechanical Engineering at the University of Sarajevo and various furniture production enterprises from Bosnia and Herzegovina. The conclusions highlight that 3D scanning in the furniture sector is advantageous for developing computer-aided design models from early-stage design prototypes, validating the dimensional accuracy of manufactured components by comparing with CAD models, safeguarding and reconstructing vintage furniture, and remanufacturing formerly produced goods that lack complete technical records (reverse engineering).