Surveying Racial Bias in Facial Recognition: Balancing Datasets and Algorithmic Enhancements
Andrew Sumsion,
Shad Torrie,
Dah-Jye Lee
et al.
Abstract:Facial recognition systems frequently exhibit high accuracies when evaluated on standard test datasets. However, their performance tends to degrade significantly when confronted with more challenging tests, particularly involving specific racial categories. To measure this inconsistency, many have created racially aware datasets to evaluate facial recognition algorithms. This paper analyzes facial recognition datasets, categorizing them as racially balanced or unbalanced while limiting racially balanced datase… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.