Leukemia is a form of blood cancer that results in an increase in the number of white blood cells in the body. The correct identification of leukemia at any stage is essential. The current traditional approaches rely mainly on field experts’ knowledge, which is time consuming. A lengthy testing interval combined with inadequate comprehension could harm a person’s health. In this situation, an automated leukemia identification delivers more reliable and accurate diagnostic information. To effectively diagnose acute lymphoblastic leukemia from blood smear pictures, a new strategy based on traditional image analysis techniques with machine learning techniques and a composite learning approach were constructed in this experiment. The diagnostic process is separated into two parts: detection and identification. The traditional image analysis approach was utilized to identify leukemia cells from smear images. Finally, four widely recognized machine learning algorithms were used to identify the specific type of acute leukemia. It was discovered that Support Vector Machine (SVM) provides the highest accuracy in this scenario. To boost the performance, a deep learning model Resnet50 was hybridized with this model. Finally, it was revealed that this composite approach achieved 99.9% accuracy.