Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Improved observational technologies have enabled the resolution of substructures and the measurement of chemical abundances in protoplanetary discs. Understanding the chemical composition of the inner disc allows us to infer the building blocks available for planet formation. Recently, the depletion of water in the inner disc has been suggested to be linked to the presence of substructures, such as gaps and rings, further out in the disc. We investigate this hypothesis further by running 1D semi-analytical models of a protoplanetary disc with a gap to understand the combined effects of disc viscosity, gap depth, gap location, and gap formation timescales on the composition of the inner disc (water abundance, C/O, O/H, and C/H ratios). Our results show that for a specific value of disc viscosity, the simulation outcome can be classified into three regimes: shallow gap, “traffic jam”, and deep gap. While deep gaps may already be distinguishable with moderate-resolution (FWHM ∼ 10 AU) techniques, it is still challenging to resolve shallow gaps with the current capabilities. On the other hand, discs with traffic jams have a higher chance of being resolved when observed with a high resolution (FWHM ≲ 5 AU), but they may appear as an intensity enhancement or even featureless when observed with moderate to low angular resolution (FWHM ≳ 10 AU). In this regard, information on the inner disc composition is useful because it can help to infer the existence of traffic jams or distinguish them from deep gaps: discs with deep gaps are expected to have a low water content – and thus high C/O ratio in the inner disc due to the effective blocking of pebbles – while discs with shallow gaps would demonstrate the opposite trend (water-rich and low C/O ratio). Furthermore, discs with a traffic jam would have a constant (albeit low) inward flux of water-rich pebbles resulting in a moderate water content and sub-stellar C/O ratios. Finally, we find that the effectiveness of gaps as pebble barriers diminishes quickly when they form late (tgap ≳ 0.1 Myr), as most of the pebbles have already drifted inwards.
Improved observational technologies have enabled the resolution of substructures and the measurement of chemical abundances in protoplanetary discs. Understanding the chemical composition of the inner disc allows us to infer the building blocks available for planet formation. Recently, the depletion of water in the inner disc has been suggested to be linked to the presence of substructures, such as gaps and rings, further out in the disc. We investigate this hypothesis further by running 1D semi-analytical models of a protoplanetary disc with a gap to understand the combined effects of disc viscosity, gap depth, gap location, and gap formation timescales on the composition of the inner disc (water abundance, C/O, O/H, and C/H ratios). Our results show that for a specific value of disc viscosity, the simulation outcome can be classified into three regimes: shallow gap, “traffic jam”, and deep gap. While deep gaps may already be distinguishable with moderate-resolution (FWHM ∼ 10 AU) techniques, it is still challenging to resolve shallow gaps with the current capabilities. On the other hand, discs with traffic jams have a higher chance of being resolved when observed with a high resolution (FWHM ≲ 5 AU), but they may appear as an intensity enhancement or even featureless when observed with moderate to low angular resolution (FWHM ≳ 10 AU). In this regard, information on the inner disc composition is useful because it can help to infer the existence of traffic jams or distinguish them from deep gaps: discs with deep gaps are expected to have a low water content – and thus high C/O ratio in the inner disc due to the effective blocking of pebbles – while discs with shallow gaps would demonstrate the opposite trend (water-rich and low C/O ratio). Furthermore, discs with a traffic jam would have a constant (albeit low) inward flux of water-rich pebbles resulting in a moderate water content and sub-stellar C/O ratios. Finally, we find that the effectiveness of gaps as pebble barriers diminishes quickly when they form late (tgap ≳ 0.1 Myr), as most of the pebbles have already drifted inwards.
Protoplanetary disks surrounding young stars are the birth places of planets. Among them, transition disks with inner dust cavities of tens of au are sometimes suggested to host massive companions. Yet, such companions are often not detected. Some transition disks exhibit a large amount of gas inside the dust cavity and relatively high stellar accretion rates, which contradicts typical models of gas-giant-hosting systems. Therefore, we investigate whether a sequence of low-mass planets can create the appearance of cavities in the dust disk. We evolve the disks with low-mass growing embryos in combination with 1D dust transport and 3D pebble accretion, to investigate the reduction of the pebble flux at the embryos' orbits. We vary the planet and disk properties to understand the resulting dust profile. We find that multiple pebble-accreting planets can efficiently decrease the dust surface density, resulting in dust cavities consistent with transition disks. The number of low-mass planets necessary to sweep up all pebbles decreases with decreasing turbulent strength and is preferred when the dust Stokes number is $10^ $. Compared to dust rings caused by pressure bumps, those by efficient pebble accretion exhibit more extended outer edges. We also highlight the observational reflections: the transition disks with rings featuring extended outer edges tend to have a large gas content in the dust cavities and rather high stellar accretion rates. We propose that planet-hosting transition disks consist of two groups. In Group A disks, planets have evolved into gas giants, opening deep gaps in the gas disk. Pebbles concentrate in pressure maxima, forming dust rings. In Group B, multiple Neptunes (unable to open deep gas gaps) accrete incoming pebbles, causing the appearance of inner dust cavities and distinct ring-like structures near planet orbits. The morphological discrepancy of these rings may aid in distinguishing between the two groups using high-resolution ALMA observations.
Context. The inner disk of the young star PDS 70 may be a site of rocky planet formation, with two giant planets detected further out. Recently James Webb Space Telescope/Mid-Infrared Instrument (JWST/MIRI) Medium-Resolution Spectrometer (MRS) observations have revealed the presence of warm water vapour in the inner disk. Solids in the inner disk may inform us about the origin of this inner disk water and nature of the dust in the rocky planet-forming regions of the disk. Aims. We aim to constrain the chemical composition, lattice structure, and grain sizes of small silicate grains in the inner disk of PDS 70, observed both in JWST/MIRI MRS and the Spitzer Infrared Spectrograph ( Spitzer IRS). Methods. We used a dust fitting model, called DuCK, based on a two-layer disk model considering three different sets of dust opacities. We used Gaussian random field and distribution of hollow spheres models to obtain two sets of dust opacities using the optical constants of cosmic dust analogs derived from laboratory-based measurements. These sets take into account the grain sizes as well as their shapes. The third set of opacities was obtained from the experimentally measured transmission spectra from aerosol spectroscopy. We used stoichiometric amorphous silicates, forsterite, and enstatite in our analysis. We also studied the iron content of crystalline olivine using the resonance at 23-24 mu m and tested the presence of fayalite. Both iron-rich and magnesium-rich amorphous silicate dust species were also employed to fit the observed spectra. Results. The Gaussian random field opacity set agrees well with the observed spectrum, better than the other two opacity sets. In both MIRI and Spitzer spectra, amorphous silicates are the dominant dust species. Crystalline silicates are dominated by iron-poor olivine. The 23-24 mu m olivine band peaks at 23.44 mu m for the MIRI spectrum and 23.47 mu m for the Spitzer spectrum, representing around or less than 10 <!PCT!> of iron content in the crystalline silicate. In all of the models, we do not find strong evidence for enstatite. Moreover, the silicate band in the MIRI spectrum indicates larger grain sizes (a few microns up to 5 mu m) than the Spitzer spectrum (0.1 to 1 mu m), indicating a time-variable small grain reservoir. Conclusions. The inner PDS 70 disk is dominated by a variable reservoir of warm (T sim 350-500 K) amorphous silicates, with sim 15 <!PCT!> of forsterite in mass fraction. The 10mu m and 18mu m amorphous silicate bands are very prominent, indicating that most emission originates from optically thin dust. We suggest that the small grains detected in the PDS 70 inner disk are likely transported inward from the outer disk as a result of filtration by the pressure bump associated with the gap and fragmentation into smaller sizes at the ice line. Collisions among larger parent bodies may also contribute to the small grain reservoir in the inner disk, but these parent bodies must be enstatite-poor. In addition, the variation between MIRI and Spitzer spectra can be explained by a combination of grain growth over 15 years and a dynamical inner disk where opacity changes occur resulting from the highly variable hot (Tsim 1000 K) innermost dust reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.