Mechanical properties play a key role in the failure of dental implants. Dental implants require fatigue life testing before clinical application, but this process takes a lot of time. This study investigated the effect of various loading angles and implant lengths on the static fracture and fatigue life of dental implants. Implants with lengths of 9 mm and 11 mm were prepared. Static fracture tests and dynamic fatigue life tests were performed under three loading angles (30°, 40°, and 50°), and the level arm and bending moment were measured. After that, the fracture morphology and fracture mode of the implant were observed. The results showed that 9 mm length implants have a higher static failure load and can withstand greater bending moments, while 11 mm length implants have a longer fatigue life. In addition, as the loading angle increases, the static strength and bending moment decrease linearly, and the fatigue life shows an exponential decrease at a rate of three times. Increasing the loading angle reduces the time of the implant fatigue test, which may be an effective method to improve the efficiency of the experiment.