Adult Drosophila Malpighian tubules have low rates of cell turnover but are vulnerable to damage caused by stones, like their mammalian counterparts, kidneys. We show that Drosophila renal stem cells (RSCs) comprise a unique, unipotent regenerative compartment. RSCs respond only to loss of nearby principal cells (PCs), cells critical for maintaining ionic balance. Perhaps due to the large size of PCs they are outnumbered by RSCs, which replace each lost cell with multiple PCs of lower ploidy. RSCs share a developmental origin with highly active intestinal stem cells (ISCs), and like ISCs generate daughters by asymmetric Notch signaling, yet RSCs remain quiescent in the absence of damage. Nevertheless, the capacity for RSC-mediated repair extends the lifespan of flies carrying kidney stones. We propose that abundant, RSC-like stem cells exist in other tissues with low rates of turnover where they may have been mistaken for differentiated tissue cells.