Herpes viruses are highly contagious agents affecting all classes of vertebrates, thus causing serious health, social, and economic losses. Within the One Health concept, novel therapeutics are extensively studied for both veterinary and human control and management of the infection, but the optimal strategy has not been invented yet. Lactic acid bacteria are key components of the microbiome that are known to play a protective role against pathogens as one of the proposed mechanisms involves compounds released from their metabolic activity. Previously, we reported the anti-herpes effect of postmetabolites isolated from Lactobacilli, and here, we confirm the inhibitory properties of another nine products against the phylogenetically distant human Herpes simplex virus-1 (HSV-1) and fish Koi Herpes virus (KHV) in cell cultures. Cytotoxicity, cytopathic effect inhibition, virucidal effect, the influence on the adsorption stage of the virus to the cells, as well as the protective effect of the postmetabolites on healthy cells were evaluated. The inhibitory effect was more pronounced against HSV-1 than against KHV at all studied viral cycle stages. Regarding the intracellular replicative steps, samples S7, S8, and S9 (Mix group) isolated from Ligilactobacillus salivarius (vaginal strain) demonstrated the most distinct effect with calculated selective indices (SIs) in the range between 69.4 and 77.8 against HSV-1, and from 62.2 to 68.4 against KHV. Bioactive metabolites from various LAB species significantly inhibit extracellular HSV-1 and, to a lesser extent, KHV virions. The blockage of viral adsorption to the host cells was remarkable, as recorded by a decrease in the viral titer with Δlg ≥ 5 in the Mix group for both herpes viruses. The remaining postmetabolites also significantly inhibited viral adsorption to varying degrees with Δlg ≥ 3. Most metabolites also exerted a protective effect on healthy MDBK and CCB cells to subsequent experimental viral infection. Our results reveal new horizons for the application of LAB and their postbiotic products in the prevention and treatment of herpes diseases.