Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Carbon recycling is poised to emerge as a prominent trend for mitigating severe climate change and meeting the rising demand for energy. Converting carbon dioxide (CO2) into green energy and valuable feedstocks through photocatalytic CO2 reduction (PCCR) offers a promising solution to global warming and energy needs. Among all semiconductors, zinc oxide (ZnO) has garnered considerable interest due to its ecofriendly nature, biocompatibility, abundance, exceptional semiconducting and optical properties, cost‐effectiveness, easy synthesis, and durability. This review thoroughly discusses recent advances in mechanistic insights, fundamental principles, experimental parameters, and modulation of ZnO catalysts for direct PCCR to C1 products (methanol). Various ZnO modification techniques are explored, including atomic size regulation, synthesis strategies, morphology manipulation, doping with cocatalysts, defect engineering, incorporation of plasmonic metals, and single atom modulation to boost its photocatalytic performance. Additionally, the review highlights the importance of photoreactor design, reactor types, geometries, operating modes, and phases. Future research endeavors should prioritize the development of cost‐effective catalyst immobilization methods for solid‐liquid separation and catalyst recycling, while emphasizing the use of abundant and non‐toxic materials to ensure environmental sustainability and economic viability. Finally, the review outlines key challenges and proposes novel directions for further enhancing ZnO‐based photocatalytic CO2 conversion processes.
Carbon recycling is poised to emerge as a prominent trend for mitigating severe climate change and meeting the rising demand for energy. Converting carbon dioxide (CO2) into green energy and valuable feedstocks through photocatalytic CO2 reduction (PCCR) offers a promising solution to global warming and energy needs. Among all semiconductors, zinc oxide (ZnO) has garnered considerable interest due to its ecofriendly nature, biocompatibility, abundance, exceptional semiconducting and optical properties, cost‐effectiveness, easy synthesis, and durability. This review thoroughly discusses recent advances in mechanistic insights, fundamental principles, experimental parameters, and modulation of ZnO catalysts for direct PCCR to C1 products (methanol). Various ZnO modification techniques are explored, including atomic size regulation, synthesis strategies, morphology manipulation, doping with cocatalysts, defect engineering, incorporation of plasmonic metals, and single atom modulation to boost its photocatalytic performance. Additionally, the review highlights the importance of photoreactor design, reactor types, geometries, operating modes, and phases. Future research endeavors should prioritize the development of cost‐effective catalyst immobilization methods for solid‐liquid separation and catalyst recycling, while emphasizing the use of abundant and non‐toxic materials to ensure environmental sustainability and economic viability. Finally, the review outlines key challenges and proposes novel directions for further enhancing ZnO‐based photocatalytic CO2 conversion processes.
Recently, various methods have been developed for synthesizing zinc oxide (ZnO) nanostructures, including physical and chemical vapor deposition, as well as wet chemistry. These common methods require either high temperature, high vacuum, or toxic chemicals. In this study, we report the growth of zinc oxide ZnO nanowires by a new hot water deposition (HWD) method on various types of substrates, including copper plates, foams, and meshes, as well as on indium tin oxide (ITO)-coated glasses (ITO/glass). HWD is derived from the hot water treatment (HWT) method, which involves immersing piece(s) of metal and substrate(s) in hot deionized water (DI) water and does not require any additives or catalysts. Metal acts as the source of metal oxide molecules that migrate in water and deposit on the substrate surface to form metal oxide nanostructures (MONSTRs). The morphological and crystallographic analyses of the source-metals and substrates revealed the presence of uniformly crystalline ZnO nanorods after the HWD. In addition, the growth mechanism of ZnO nanowires using HWD is discussed. This process is simple, inexpensive, low temperature, scalable, and eco-friendly. Moreover, HWD can be used to deposit a large variety of MONSTRs on almost any type of substrate material or geometry.
Metal oxide nanostructures (MONSTRs) have become popular in various fields. This study investigates the durability of MONSTRs synthesized through hot water treatment (HWT) using copper, aluminum, and zinc as the source metals of choice. The physical durability tests include pressure, scratch, and scotch tape adhesion tests, and chemical durability tests such as corrosion resistance tests, heat resistance, and solar exposure tests. Results showed that MONSTRs synthesized from HWT are highly durable under the tested conditions except for NaOH and HCl immersion tests for copper oxide and zinc oxide. The study concluded that HWT is a sustainable synthesis method for MONSTRs. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.